If neither u is an ancestor of v nor v is an ancestor of u, then u and v reside in two different subtrees of LCA(u,v);
In pre-order traversal, LCA(S) appears before all elements in S, while in post-order traversal, it appears after all elements in S;
The LCA of the union of two node sets is the LCA of their individual LCAs: LCA(A∪B)=LCA(LCA(A),LCA(B));
The LCA of two nodes always lies on the shortest path between them;
d(u,v)=h(u)+h(v)−2h(LCA(u,v)), where d is the distance between two nodes on the tree, and h represents the distance from a node to the root.
Solving Algorithms
Prerequisite 1: Adjacency List Storage of Trees
In simple terms, adjacency list storage means for each node, store all nodes directly reachable via one directed or undirected edge.
Traditional implementations use linked lists (or simulated linked lists), which can be cumbersome and error-prone. For better readability, we use vector from the STL.
1
2
3
4
#include<vector>// Requires STL vector
#define maxn 100005 // Maximum number of nodes
std::vector<int>G[maxn];
#include<cstdio>#include<vector>#include<cmath>#define maxn 500005
usingnamespacestd;vector<int>G[maxn];intfa[maxn][19];// 2^19=524288
intdepth[maxn];voiddfs(intv,intpar){fa[v][0]=par;intd=depth[v]+1;for(inti=1;(1<<i)<d;i++)fa[v][i]=fa[fa[v][i-1]][i-1];for(intu:G[v])if(u!=par)depth[u]=d,dfs(u,v);}inlineintlca(intu,intv){if(depth[u]<depth[v])u^=v^=u^=v;intm=depth[u]-depth[v];for(inti=0;m;i++,m>>=1)if(m&1)u=fa[u][i];if(u==v)returnu;// This line is essential
for(inti=log2(depth[u]);i>=0;i--)if(fa[u][i]!=fa[v][i])u=fa[u][i],v=fa[v][i];returnfa[u][0];}intmain(){intn,q,root;scanf("%d%d%d",&n,&q,&root);for(inti=1;i<n;i++){intx,y;scanf("%d%d",&x,&y);G[--x].push_back(--y);G[y].push_back(x);}depth[--root]=0;dfs(root,-1);while(q--){intu,v;scanf("%d%d",&u,&v);printf("%d\n",lca(--u,--v)+1);}return0;}